Back to top

WEB Based Pro Tune Up

WEB Based Pro Tune Up

The purpose of the class is to teach the design methods and validation strategies necessary to assure first time success when implementing modern systems that would typically include, DDR3 / 4, SERDES, LVDS, Gigabit Ethernet, USB, Analog / Digital, Switching Power Supplies, etc.

Pro Tune Up is based on a design methodology developed by a major telecommunications company which has been documented over multiple years and thousands of designs to produce “right the first time” results 99% of the time. “Right the first time” means the systems work correctly at full speed, they are reliable, they have clearly defined manufacturing margins, and they are quiet enough to pass FCC & CISPR radiated emissions tests on the first try!

Target Audience: Electrical Engineers, FPGA Designers, EMC Certification Engineers and CAD Layout Designers responsible for implementing high speed digital and mixed analog digital systems.

Content
Basic Signal Integrity including board layer stack-up specification, high speed routing topology, space, trace, termination practices, and return current control. Get this wrong and the system will reward you with a host of problems including False Clock, False Data, Negative Timing Margins, Clock Jitter, Excessive EMI as well as a host of Manufacturing and Reliability issues.

Power Integrity is a lot more than one 0.1uF and two 0.01uF caps per pin. Power integrity depends upon stack-up, capacitor selection, placement, mounting technique, and quantity. Typical target impedance for memory systems must be around 0.1 ohm from DC to the highest frequency of interest. Poor design can result in power impedance poles and inter plane resonances. Many of the mysterious SI and EMI issues can be traced directly to poor power system design.

Root causes and cures for EMI. The goal is to stop the EMI noise at the source. If EMI noise is eliminated at the source, you do not need to chase it around the board. Once you have controlled the noise source, the next issue is to avoid making an efficient antenna. A noisy board with no antenna does not radiate. You need to clearly understand the key reasons for EMI if you want to have any chance of repeatable success.

DDR3 / DDR4 issues. Do you understand the four signal classes which make up a DDR3/4 memory interface. Do you know how to terminate and length match the signals in order to meet timing constraints. Do you know that most published length constraints are ridiculously tight. If you use SODIMM's, Master Clock, Address, Command, and Control need to be routed with VCC as the reference plane . Do you know why? What constitutes a "safe via?"

Differential Signaling What is the difference between 10/100 Base T Ethernet and LVDS? Are they fundamentally the same or is there a critical difference that can lead to other issues? With the huge noise margin available using LVDS devices, you can use almost any interconnect scheme. However, there can be other nasty complications like Cross Talk and EMI if you do it incorrectly.

SERDES interface routing issues … PCI Express, 10GHz XAUI, Gigabit Serial, etc.. We explain what is important and also debunk some of the popular myths about routing these types of interfaces. Do you understand how vias can cause a non-phase coherent channel?

Analog Digital Interface i.e. Isolation vs. Communication There are many ways you can do this, but only one is easy to understand and produces repeatably good results. How do you control EMI if you need to have long leads on isolated inputs?

Quiet DC to DC Switchers There are many voices in the technological wilderness. I teach a method that keeps these things from contaminating the rest of your design.

To Moat or Not To Moat..That is the question! Slicing up the ground plane has caused more problems than I can count. Do you know how to analyze these issues?

Proper Grounding Practice Can you explain how signal ground should be connected to chassis ground and why?

Connectors, Board to Board, Board to cable, etc. What are the SI, EMI, and Power Issues. When we get to the connector, we still need to deal with physics.

Basic Shielding & Filter Theory as it applies to Enclosures, Switching Power Supplies, and Renegade Chips

Critical elements in an effective high speed system design process. Simply performing a solid pre-layout design review and including the correct personnel can raise you first time odds of success to at least 65%. Adding the post-layout design review can result in first time success 90%+ even the first time you go through the process. Getting from 90% to 99% "right the first time" results is simply a matter of practice if you use methods based in real physics.

Teaching Method ...

The class is has three sections:

First: Pre-class home work videos. These are under the "Jump Start Tutorial".

Second: Pro Tune Up videos. These videos cover the basics of the advanced subjects.

Third: 2 to 10 hours of post class hands on Signal Integrity and Power Integrity simulation labs using Mentor HyperLynx. The post class labs are supported with videos of the instructor actually doing the lab, but the purpose is not to have the student mimic the instructor key stroke by key stroke. The purpose is to put the student into a known environment and then encourage them to explore the design space. The student needs to "twist the knobs" and get answers to questions specific to their own particular interests. The student must contact Mentor to get a temporary license for HyperLynx. If you are also purchasing consulting time for Q&A, I will contact Mentor for you.

Why should I take this class?

Any Electrical Engineer, CAD Layout Designer, or Technical Manager who is tired of playing "Whack A Mole"** would find this class extremely useful. Students who have implemented this methodology have regularly produced complex designs that do indeed work correctly on the first implementation. This saves about $12,000 in out of pocket expenses and two-three months (calendar time) on the average project.

Is this class appropriate for a beginner? The pre-class homework material ( "Jump Start Tutorial" ) thoroughly covers the basics. In each class I also review the basics. Review of basics is mandatory because over 50% of problems I have found in Disaster Recovery Consulting has been directly related to basic structural errors. The laws of physics defines what happens electrically. You must go through the pre-class homework to be sure your opinions are based on real physics and not on some out of date application note.

**For those of you who have not attended one of my previous classes, "Whack a Mole" is an arcade game that kids love. There are nine holes and a worm like creature ...a mole ...sticks its head up and the kids whack it with a plastic sledge hammer. After a few seconds the "mole" pops up in another location. The faster the kids whack the mole, the faster it moves to a new location. Kids love the game, but from a high speed design standpoint, it becomes an infuriating game quite rapidly. This class will help you permanently end the SI / EMI version of the "Whack A Mole" game.

Click here to Register for this class

Click here for Pro Tune Up Pre-class video homework

Click here to pay Web Based Pro Tune Up Tuition with Credit Card

Pro Tune Up ---> VIDEO Class Description. This will give you a feeling for the class..TFox

Here is a PDF description of the Pro Tune Up class

link for post class labs

Process Implementation ... 3 day on site class description